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A1IIInct-it has RlCCDt1y been shown that the finite elastic-plastk: solution of the simple shear
problem exhibits an oscillatory stress response when kinematic hardening is employed, while
the solution for isotropic hardening gives a monotonically increasing stress. This paper analyzes
this response on the basis of continuum mechanical descriptions of the problem. Three objective
stress rates arc recalled and spatial descriptions of plasticity at finite deformation arc reviewed
for the usual generalization of the infinitesimal theory as well as a theory based on an invariant
measure of true stress. In light of the equations for the evolution of the yield surface, the
hypoelastic solution to the simple shear problem for each of the three stress rates is presented.
It is shown that the use of the Jaumann rate in the generalization of the infinitesimal theory
leads to an oscillation in the evolution of the yield surface in simple shear which is explained
on the basis of the hypoelastic solution. An alternative theory which makes use of the polar
decomposition predicts a monotonically increasing shear stress.

INTRODUCTION

An interesting difficulty in the numerical evaluation of the large deformation simple-shear
problem has recently been presented by Nagtegaal and De Jong[I]. The trouble encoun
tered in [I] is that when kinematic hardening of the plastic deformation is implemented
for a material which strain hardens monotonically in tension, the resulting shear stress
exhibits oscillatory response with increasing shear strain. It is also reported in [I] that this
difficulty does not arise if isotropic hardening is employed.

This paper summarizes the results of a study whose purpose is to explain the
phenomena observed in [I] and to put them into proper perspective regarding established
concepts in continuum mechanics. It follows the work of Lee et a/.[2] who discuss the effect
on the basis of finite deformation plasticity and propose a new objective stress rate to avoid
the oscillatory response found in [I]. Lee's solution[2] depends on the introduction of a
particular hardening mechanism (kinematic hardening), whereas we show that the
response is actually more fundamentally associated with the rate type constitutive model
and that it can occur without consideration of plasticity at all.

We begin by reviewing the basic relations between the kinematic and stress variables
at finite deformation, including a discussion of their rates and restrictions imposed by the
requirements of invariance under superposed rigid body motion. Use is made of the polar
decomposition of the deformation gradient to introduce a set of kinematic and stress
quantities which have the convenient property of being unchanged under superposed rigid
body motions. Next we recall three measures of the rate of Cauchy (true) stress and
introduce the hypoclastic constitutive equation in general form. Following this, we discuss
two theories of plasticity at finite deformation-one which employs the polar decom
position and the other which is the usual extension of infinitesimal plasticity which led to

tWork supported by the U.S. Department of Energy under contract DE-AC04-76DPOO789.
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the oscillatory response noted in [I]. We pay particular attention to the constitutive
equations for the hardening variables in the cases of isotropic and kinematic hardening.
In this we show that there is a fundamental difference in the form of these equations
between the two cases. Specificially we show that for isotropic hardening an invariant
scalar variable controls the hardening, while for kinematic hardening the constitutive
equation for the tensor hardening variable has the form of the hypoelastic constitutive
relation. With this in mind we consider analytical solutions to the simple shear problem
using a hypoelastic constitutive equation with the three stress rates introduced previously.
The hypoelastic solution using the rate employed in the usual extension of infinitesimal
plasticity gives a shear stress which is a sinusoidal function of the angle of shear. The other
stress rates lead to monotonically increasing shear stresses as the deformation proceeds.
We conclude that the usual extension of plasticity predicts the oscillatory response of the
simple shear problem with kinematic hardening because of the particular stress rate that
is employed and that any theory (not only plasticity) which uses that stress rate is similarly
subject to such response. t

STRESS AND STRAIN AT FINITE DEFORMATION

Let us identify a material point X in a reference configuration Boby the position vector
X and in the current state of deformation B by the vector x, where x =x(X, t). The
deformation gradient F associated with the motion between Bo and B is defined as

F = ax
ax' J = det F > O. (1)

Recalling the polar decomposition theorem, we can write

F=RU (2)

where U is a symmetric, positive-definite tensor whose principal values are the stretch ratios
of the deformation, and R is a proper orthogonal tensor called the local rotation tensor.

Associated with the polar decomposition (2) is an intermediate configuration Dwhich
is attained after the stretch U, but before the rotation R. In this form of the polar
decomposition, an arbitrary line element dX in Bo is stretched by U into d~ in D, and is
subsequently rotated by R into dx in B. We note here two important features of the
decomposition: First, the local rotation between Dand B involves no stretching, and second,
in addition to the rotation R, the stretch tensor U causes a rotation ofany line element which
is not aligned with the principal directions of U.

The Lagrange strain E is

(3)

where I is the identity tensor and C is the right Cauchy-Green tensor.
The velocity of point X is v =xwhere superposed dot indicates material time derivative

holding X fixed. The associated velocity gradient is

L:= ov=~ ax =W-1.
aX ax ax (4)

The symmetric part D of the velocity gradient is called the rate ofdeformation tensor while
the skew-symmetric part W is caHed the spin or vorticity tensor. We also define for later use

tThe association of the problem with stress rates was first suggested to the authors by R. D. Krieg and S.
W. Key.
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a rate of rotation tensor fl and an unrotated rate of deformation tensor d as
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fl =RRT
, d = R7J>R = ~ ((Ju-I +U-IV)

2
(5)

where fl is skew symmetric since RRT = I and represents the angular velocity associated with
the local rotation R. The rate of strain is related to the rates of deformation as

E=F7J>F =UdU. (6)

In discussing the stress and stress rate at large deformation, we will examine three
different measures-the symmetric Piola-Kirchhoffstress S, the Cauchy (or true) stressT and
an unrotated Cauchy stress (I. These stress measures are related as

I
(I =Jusu =R7'fR. (7)

In light of our discussion of the polar decomposition, we note that the unrotated Cauchy
stress is the "true" stress associated with the stretch U alone. That is, it is the true stress
referred to the intermediate configuration B. Further, since R is a proper orthogonal tensor
the principal invariants of T and (I are identical.

We can now recall some basic results concerning invariance under superposed rigid
body motions. Thus, consider a motion which differs from the given motion only by a
superposed rigid body motion, i.e.

X+ =8(/) + Q(/)X (8)

where 8(/) represents a rigid-body translation, and Q(/) is a proper orthogonal tensor
representing a rigid-body rotation of the deformed state.

For quantities associated with the motion (8) we use the same symbol, but add a
superscript plus (+). The basic kinematic variables transform as

F+ =QF,

while the rate relations are

R+ =QR, U+=U, c+=c, E+=E (9)

L + = QQT+ QLQT, D+ = QDQT,

g+ =OOT+QflQT, d+ =d,

Also, the various stresses and their rates transform as

W+ =QQT+ QWQT

E+=E.
(10)

and

S+=S, (11)

8+=8, d+ = d', (12)

On examination of these transformations, we observe that certain of the rate
variables, in particular L, W, g and t, are not objective in that they are neither unchanged
nor unchanged apart from orientation under superposed rigid body motion.t The
implications of this fact are discussed below in relation to the derivation of an appropriate
stress rate.

tThe terminology UIOd here is that of [31 in which a more complete discussion of invarian<:e under superposed
rigid body motions is to be found.
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STRESS RATE

In many circumstances, the description of elastic-plastic response, for example, it is
desirable to write the constitutive relation for a material in terms of rate of stress and rate
of strain or deformation. Often we want to relate the rate of change of deformation as
measured in configuration B to the rate of change of stress measures in that configuration
(the rate of Cauchy stress). Unfortunately, we see from eqn (12) that t is not an objective
quantity and hence cannot be used alone in a constitutive equation. It is this lack of
objectivity of t which has prompted the introduction of the various stress rates which have
been discussed in the literature and have been implemented in the computer codes for large
deformation problems.

The problem addressed here has been considered by numerous authors[4-8] and has
been approached from a variety ofdirections. It should be noted at the outset that a sizable
body of the mechanics community has regarded the discussion of stress rates as a dead
issue [9-11]. The justification for this feeling lies in the theory of hypoelasticity in which
a rate type constitutive equation is defined to be of the form

f =f(T, D) (13)

where f represents any measure of the rate ofchange of Cauchy stress which is unchanged
apart from orientation under superposed rigid body motions. All of the stress rates
considered in hypoelasticity may be thought of as being equivalent to one another provided
the r.h.s. of (13) is appropriately chosen for each measure. In the following paragraphs
we discuss the three objective stress rates introduced by Jaumann{12], TruesdellI13], and
Green and Naghdi[14, 15]. While there have been many more stress rates proposed these
are chosen because of the wide use of the Jaumann rate, the natural connection between
the Truesdell rate and nonlinear elasticity, and the association of the Green-Naghdi rate
with the definition of a simple material (in the sense of Noll [16]).

Jaumann's definition, denoted fa, creates an objective rate quantity from t by
introducing the form

(14)

This particular stress rate (which is also called the co-rotational stress rate), is currently
the most popular of the many available. The preference of eqn (14) over the others seems
to stem from a paper by Prager[5] in which it is shown that if fa is zero for some motion,
then the invariants of the Cauchy stress are stationary during the motion. Unfortunately,
this measure has been found to lead to a nonsymmetric stiffness tensor between rates of
stress and deformation unless the material is incompressible[I7].t In addition, Bazant[8]
indicates that while the Jaumann rate is objective, it has no conjugate measure of finite
strain associated with it.

Truesdell's stress rate, fb, may be obtained by differentiating the expression for T in
terms of S, eqn (7), giving

(15)

From this we see that the Truesdell stress rate is just the expression for the rate of change
of the symmetric Piola-Kirchhoff stress, expressed in the deformedcontlgurationB. Thus,
vanishing of til implies that S is constant during the motion. This stress rate would
naturally appear in problems in which a strain energy function gives the constitutive
equation between quantities in the reference. configuration Bo, the symmetric
Piola-Kirchhoff stress S and the Lagrange strain E. In cases when one is trying to obtain

t This lack ofsymmetry can be avoided by introducing the Kirchhoff stress. '1' = IT, and defining the constitutive
equation in terms of the Jaumann rate OfT, fa = T' - WT + TW.
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a constitutive relation between stress rate in the deformed configuration B and the rate
of deformation, t b may not be as useful since neither T nor its invariants are stationary
for vanishing t b.

The final stress rate, denoted t e
, is obtained by differentiating the expression for T in

terms of tI giving

tc=t-UT+TU = RdRT. (16)

We see that this stress rate represents the derivative of an invariant measure of stress, tI,

whose principal invariants have the same values as those for the Cauchy stress. Thus, if
t c is zero, Prager's condition that the invariants of the Cauchy stress be stationary [5] is
satisfied. A possible advantage of this rate measure over Jaumann's is that it is derivable
from a physically meaningful stress, tI, and is truly a measure of the rate ofchange of stress
in the deformed configuration.

The use of tI is an appropriate measure for stress in a spatial description of motion
is certainly not new. In fact, it is this stress measure which is used in the definition of a
simple material [10, 16]. The definition of a simple material is one in which the stress t1 may
be written as a functional of the stretch tensor U alone. NolI[16], in his derivation of the
simple material, defines a rate of stress by taking a derivative of t1, but his use of the relative
deformation gradient leads him to a stress rate which is equivalent to the Jaumann rate.

ELASTIC-PLASTIC RESPONSE AT FINITE DEFORMATION

With the basic concepts of the previous two sections in mind, we begin our discussion
of the theory of plasticity at finite deformation. In this section we examine the spatial
formulation of two finite deformation plasticity theories: that of Green and Naghdi[14]
and the usual generalization of the infinitesimal plasticity[I , 18-20]. In the former
derivation, all kinematic and stress quantities are defined with respect to the intermediate
configuration 8(d, tI, etc) while in the latter, all such quantities are referred to the current
configuration B(D, T, etc.).

Motivated by the simple shear response observed in [I], we consider in detail the forms
of the equations for the two theories for the cases of ideal isotropic and kinematic
hardening with a Mises yield criterion.. It is shown that a fundamental difference in the
structure of the equation for the two hardening mechanisms accounts for the difference
in the solutions noted in [I].

We will discuss the theory of plasticity in terms of a yield Junction or yield surface in
stress space. We consider all motions which are "inside" the yield surface to be elastic
motions and those which are on the surface itself to be elastic-plastic motions, From a
point on the yield surface there are three possibilities: loading if the increment ofadditional
stress is directed outward from the surface, unloading if the increment of additional stress
is directed inward, and neutral loading if the stress increment is tangent to the surface.
The question of hardening arises in relation to the evolution of the yield surface as loading
proceeds.

Following the derivation in [14], the rate of deformation is decomposed into elastic and
plastic parts as

D=D'+J)P

and the unrotated rate of deformation d is decomposed as

d=d'+cV

where

(17)

(18)

d'= R7J>tR, cV=R7'D'R. (19)
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For our discussion of isotropic and kinematic hardening the yield surface in the spatial
description will be written in terms of quantities referred to the intermediate configuration
jj as

f«(I, a) = K (20)

where a is the kinematic hardening variable and I< is the scalar work-hardening parameter
associated with isotropic hardening. The second-order tensor a is taken to have units of
stress and to have the same invariance properties as (I. We refer to II as the back-stress.
For fixed values of II and 1<, eqn (20) represents a surface in six-dimensional stress space.

The constitutive equations for the rates of change of the plastic strain, back-stress and
work-hardening may be expressed as

where j is the loading index,

o f<K,

o f=K, j<O
dP = o f=l<, j=O

/lj f= K, j> 0

1% = gdP, K = tr {hdP}

A {Of .}f=tr 0(1(1 ,

(21 )

(22)

/I and h are second-order tensor functions of (I, ex and K, and g is a fourth-order tensor
function of the same arguments. The four conditions involving f and j in the first of eqn
(21) represent elastic deformation, unloading, neutral loading and loading from an
elastic-plastic state, respectively.

The difficulty associated with modelling an actual material lies in the specification of
the yield function f and the constitutive tensor functions /I, h and I. The usual approach
for establishing the form of /I is to apply the condition that the plastic increment of the
deformation is in a direction perpendicular to the yield surface. For the infinitesimal theory
this normality rule can be derived from Drucker's postulate that the work done during
any cyclic motion be non-negative. For a finitely deformed material, however, Naghdi and
Trapp[21] have shown that an assumption that the work done in a cyclic motion is
non-negative does not necessarily lead to a normality condition. Recognizing this, it is
sufficient for our purposes to assume that the material is such that normality holds. We
now proceed to discuss hardening in the extremely idealized cases of isotropic and
kinematic hardening.

In discussing isotropic hardening, we use the Mises yield criterion

y2
K=

3 '
11=1%=0 (23)

where (I' is the deviatoric part of the stress,

(24)

and Y is the yield stress in tension. The assumed normality condition implies that /I in eqn
(21) be a scalar multiple of (I' so that

j = tr {(I'(I} = K. (25)
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If we introduce an effective plastic strain rate

and a corresponding effective plastic strain as

then we can take the yield stress to be written as

Y = Y(lP).

Then, from eqn (23) we have that

2 . 2 .,,=- YY =- YhlP
3 3

where the hardening modulus h is obtained from the equation

The plastic strain rate from eqn (25) can be used in eqn (26) to write tp as

73\

(26)

(27)

(28)

(29)

(30)

(31)

However, since1= " and" is given in eqn (29) as a function of tp
, we can solve for 'IJ

in terms of h as

so that

dP =4:y 2 tr {tI'd }tI'.

(32)

(33)

Thus we see that the isotropic hardening evolves through the scalar equation for" which
is proportional to the hardening modulus h.

We turn now to kinematic hardening, in which the evolution in the yield surface occurs
not by its changing size, but by translation of its center with respect to the unstressed state.
To effect this change in position, the back stress ac is employed and the yield function is
written

f = ~ tr {(tI' - exf}, (34)

where Yo is the initial yield stress in uniaxial tension. The normality condition now reqiures
that _ be proportional to tI' - ex so

dP = "IJ(tI' - ac), 1= tr {(tI' - ac)tt}. (35)
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Since K = 0, evolution of the yield surface is given by the evolution of II, eqn (21). The
classical assumption associated with kinematic hardening is that the hardening variable (l
moves in the direction of plastic flow, so that

Ii = 0kl'k tr {(O" - (l)d }(O" - (l) (36)

where bk is a scalar. If we multiply both sides of eqn (36) by (0" - «) and take the trace
we find that

3
Yk = 2c5

k
Yo2 (37)

where we have used the fact that! = " = O. Again introducing the hardening modulus h,
we find from the consideration of a uniaxial tension test that

so that

2
Yk =-h

3

9
dP = 4h Yo2 tr {(O" - (l)d }(O" - (l)

, 2
a =3hdP.

(38)

(39)

If eqn (39)2 is premultiplied by Rand postmultiplied by RT
, it is clear that the

constitutive equation for II has the same form as the fundamental constitutive equation
for hypoelasticity, eqn (13), using t e• Thus the evolution of kinematic hardening is through
a hypoelastic type of equation while the evolution of isotropic hardening is through the
growth of the scalar parameter K.

Let us now consider the parallel development of a plasticity theory involving kinematic
and stress measures in the current configuration B. It is such a theory that was used in
[1] and that led to such different responses in the two cases of hardening. We again assume
that the additive decomposition of the velocity gradient is valid, eqn (17), and let the yield
surface be written as

f*(T, (l*) =K* (40)

where a* and K* are again the kinematic and isotropic hardening variables, with a* having
units of stress and exhibiting the same response under superposed rigid body motion as
T. As noted in [14], the requirement that the value of K* be unchanged under superposed
rigid body motions restricts!* to be an isotropic function in both T and«·, In addition,
we recall that the material time derivative of T (and hence also of••) is not objective and
so we must introduce one of the various stress rates discussed. earlier. The rate 'usually
chosen for this is the Jaumann rate[l, 18-20].

The constitutive relations for the plastic deformation and hardening variables are then

1

0,

J)P = ~:
p*/*,

f* < K*,
f* = K*,
f* =Ie*,
f* = K*,

/* <0
/*=0
/*>0

Ii* =g*DP, K* = tr {h*DP} (41)
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where the loading index is

and ~t is the Jaumann rate of the back-stress att

lit == Ii - Wat + atW.
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(42)

(43)

The case of isotropic hardening, using the Mises yield criterion, has the yield function
written as

II*==~*=O (44)

where Y has the same meaning as before and T' is the deviatoric part of the. Cauchy stress

Normality implies that the plastic strain rate is

IV = 'I1/*T', /* = tr {T'T"} = K*

where we have used the fact that

tr {T't} =tr {T'1"'}.

. (45)

(46)

(47)

Since dP == RTI)PR, the expression for the effective plastic strain rate, eqn (26), can be
rewritten

[
2 JI12tp == 3tr {DP2} . (48)

Using the same procedure as used with the theory of Green and Naghdi[14], we can show
that

DP = 4:Y2 tr {T'1"'}T'. (49)

Recalling eqns (29) and (33), any noting that (1' == R7T'R, we find that the constitutive
equations for isotropic hardening obtained from the two theories are identical.

For the case of kinematic hardening we let

K* = O. (SO)

Normality implies that

I)P == '1:/*(£' -11*), /* == tr {(£' -1I*)1"'}

and the classical hardening assumption for II * implies that

(51)

(52)
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Again considering the uniaxial test we find that

D*P = 4h
9
Y

o
2 tr {(T' - «*)1'a}(T' - «*), (53)

On comparing eqns (39) and (53), we find that the expressions for the rate of plastic
deformation are the same, but since «* :F RriRT

, the expressions for the rate of change
of the back-stress are different. Thus, while the two approaches give the same result for
the case of isotropic hardening, they do not for the case of kinematic hardening. As we
show in the next section, the oscillatory response of the simple-shear problem with
kinematic hardening is due to the evolution of «* as governed by the rate equation (53).

SIMPLE SHEAR·HYPOELASTIC SOLUTIONS
Simple shear is a deformation controlled process in which the stress is evaluated on

the basis of suitable constitutive equations. In solving this problem, our choice for the
constitutive equations is guided by the hypoelastic equations governing the evolution of
the back-stress, eqns (39) and (53). The general form of this simplest of hypoelastic
relations is

l' = q(D) (54)

where q is a tensor function which is linear of degree one in D, and l' represents either
'fa, fb or 1'<'. While eqn (54) would at first appear to be rather general in form, we note
that the behavior of l' and D under superposed rigid body motions restricts q to be an
isotropic tensor function in D. Thus we may write

t = A tr D I + 2#D. (55)

Solutions of the simple shear problem at finite deformation using eqn (55) with 'fa and
fb may be found in [9], while the use of 1'< in eqn (55) was considered by Dienes[22]. We
recall these solutions here and show how they relate to the hardening equations of the
previous section.

At any time, t, the deformation associated with simple shear is given in terms of the
current position as

(56)

The associated deformation and velocity gradients are then

[
1 k 0]

F= ° 1 °° 0 l'
[
0 Ii 0]

L= ° 0 °o 0 0'
(57)

Evaluation of the stress response for the three rates consists of using eqn (57) in the
appropriate stress rate equations and then solving the resulting differential equations. For
the Jaumann rate it is a simple matter to show that

whose solution is

(58)

Til = - Tn=Jl(l-cosk), Ti2 =Jl sin k. (59)
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On examination, we see that the hypoelastic solution employing the Jaumann rate
exhibits a sinusoidal response for the applied shear stress. Recall that the evolution
equation for the kinematic hardening variable ac*, eqn (53), is a hypoelastic type equation
using the Jaumann rate. Thus, we find that for constant hardening modulus h the shear
stress component of the back stress should vary as a sinusoid and the oscillatory response
observed in [1] is related directly to the hypoelastic solution, eqn (59).

Having shown the cause of the oscillatory response of the simple shear solution when
using the usual plasticity theory which employs the Jaumann rate, we tum our attention
to the response of the same problem when the plasticity theory of Green and Naghdi [14]
is used. In this case, the response of the back-stress ac is governed by a hypoelastic equation
involving the stress rate t e•

In examining the simple shear response using fe, we refer to the analysis of Dienes[22]
in which he shows thatt

where

T~I = - Tn =4p (cos 2P In (cos P) +Psin 2P - sin2 P)
Th = 2p cos 2p(2P - 2 tan 2P In (cos P) - tan P) (60)

(61)

In this case, the shear stress in a monotonically increasing function of k. Thus, we would
not expect to find an oscillatory response in the back-stress when using the plasticity theory
of Ref. [14].

A final stress rate, the Truesdell rate, is also considered. For this case we find the
equations

t 6 • 6
II - 2kT12 =0,

which may be integrated to give

t 6 • 6 •
12 - kT22 = lip, t~=o (62)

T6 _ .. I,.2
II-~ , T~=O. (63)

This response does not exhibit sinusoidal behavior, but as noted before is the result of an
expression for the rate of change of the symmetric Piola-Kirchhoff stress. We again note
that the vanishing of 'f'b does not ensure that the invariants of the Cauchy stress are
constants. As such, it is difficult to establish a meaningful loading index in terms oft6 and
its use in an elastic-plastic theory has been limited.

DISCUSSION

We consider now a numerical example in which the elastic-plastic simple shear problem
is solved for three cases of hardening: isotropic hardening, eqn (33) or (49); kinematic
hardening using the theory of Green and Naghdi[14], eqn (39); and kinematic hardening
using the usual plasticity theory of [1, 18-20], eqn (53). In all cases, the hardening response
is bi-linear in uniaxial tension, with initial yield at 345 MPa and a hardening modulus of
138 MPa. The elastic Youngs modulus is 206 GPa with Poisson's ratio of 0.33. The plots
of shear stress 112 versus shear strain k as determined by the GNATS2 computer
program[23] are shown in Fig. 1.

The isotropic hardening exhibits bilinear response at a level below the uniaxial data
by a factor of J3 in accordance with the Mises yield criterion used. The kinematic
hardening using the Jaumann rate exhibits a sinusoidal response beyond the yield point
as we had anticipated following eqns (53) and (59). The response for the kinematic

t Note that in the expression for the shear stress, the term tan 2IJ was incorrectly printed tan2 IJ in [22] (see eqn
(5.25».
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Fig. I. Shear stress vs shear strain for the solution to the simple shear problem. The top curve
is the solution obtained using an isotropic hardening model. The dotted line is the solution using
a kinematic hardening model employing the Green-Nagbdi stress rate and the solid line is the

solution using a kinematic hardening model employing the Jaumann stress rate.

hardening using the Green-Naghdi rate lies between these two and has a monotonically
increasing shear stress.

On the basis of this simple example alone, we cannot make sweeping statements
regarding the general utility of one stress rate versus another. It does point out, though,
some interesting features which bear examination. First, it indicates that the use of the
Jaumann rate in the simple constant coefficient case can lead to results which are clearly
not physically realistic (the period of the sinusoidal response is independent of material
constants). Thus, an identification of the parameters of the constitutive equation based on
a uniaxial tension test alone may not given meaningful results under general loading. The
use of the Jaumann rate is not necessarily ruled out, but if the problem with the simple
shear response is to be corrected, it will Pe by introdllCing additional complexity into the
form. of the constitutive relation, (perhaps by letting q(D) in eqn (54) be a function of T
as in the general hypoelastic constitutive relation, eqn (13». The problem then becomes
one of identifying the additional coefficients associated with such a generalization.

In discussing the Green-Naghdi rate, we note that the shear stress is not a linear function
of the shear strain. It is, though, an increasing function somewhat below the curve for
isotropic hardening. This response is in qualitative agreement with experimental obser
vati(ms that when uniaxial and torsion data are compared to one another through use of
the Von Mi~s effective stress, the torsion data is below the uniaxial data and the ditrercmce
increases with increasing deformation. A recent discussion of this maybe found in [24].

In addition to this qualitative observation, there are several factors which may make
the use of this rate a desirable cboice. As already mentioned, it is obtained from the rate
of change of a qU~lDtity which is both a measure of true stress and is invariant. Its
derivation makes use of the intermediate configuration .B which allows the description of
a constitutive equation which is independent of the local rotation R. That is, use of this
rate is associated with the idea that the relation between stress anddcfonnatiOn should
depend' only upon the motion causing the stretching of material elements and not on the
local rotation of such elements. Also, since (J is invariant under superposed rigid body
motions, there is no restriction of isotropy as when the Cauchy s~ss T is used.

In summary, we have shown that the oscillatory response observed in [1] for the simple
shear problem with kinematic hardening is caused by the use of the Jaumann rate ofstress
in a constitutive model which predicts linear hardening in uniaxial tension. We have also
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shown that an alternative theory which makes use of the polar decomposition[14] leads
to a monotonically increasing shear stress with increasing shear strain. In addition. the fact
that this theory employs quantities which are invariant measures of the current
configuration may make it more useful in modelling the plastic response of actual
materials.
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